Random Walks and Graph Homomorphisms

نویسندگان

  • Amir Daneshgar
  • Hossein Hajiabolhassan
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graph Homomorphisms and Phase Transitions Bell Laboratories 2c-379 Lucent Technologies 700 Mountain Ave

We model physical systems with \hard constraints" by the space Hom(G;H) of homomorphisms from a locally nite graph G to a xed nite constraint graph H. For any assignment of positive real activities to the nodes of H, there is at least one Gibbs measure on Hom(G;H); when G is in nite, there may be more than one. When G is a regular tree, the simple, invariant Gibbs measures on Hom(G;H) correspon...

متن کامل

Graph homomorphisms through random walks

In this paper we introduce some general necessary conditions for the existence of graph homomorphisms, which hold in both directed and undirected cases. Our method is a combination of Diaconis and Saloff– Coste comparison technique for Markov chains and a generalization of Haemers interlacing theorem. As some applications, we obtain a necessary condition for the spanning subgraph problem, which...

متن کامل

Fuchsian groups, coverings of Riemann surfaces, subgroup growth, random quotients and random walks

Fuchsian groups (acting as isometries of the hyperbolic plane) occur naturally in geometry, combinatorial group theory, and other contexts. We use character-theoretic and probabilistic methods to study the spaces of homomorphisms from Fuchsian groups to symmetric groups. We obtain a wide variety of applications, ranging from counting branched coverings of Riemann surfaces, to subgroup growth an...

متن کامل

Graph Homomorphisms between Trees

In this paper we study several problems concerning the number of homomorphisms of trees. We begin with an algorithm for the number of homomorphisms from a tree to any graph. By using this algorithm and some transformations on trees, we study various extremal problems about the number of homomorphisms of trees. These applications include a far reaching generalization and a dual of Bollobás and T...

متن کامل

Random Walks and Chemical Graph Theory

Simple random walks probabilistically grown step by step on a graph are distinguished from walk enumerations and associated equipoise random walks. Substructure characteristics and graph invariants correspondingly defined for the two types of random walks are then also distinct, though there often are analogous relations. It is noted that the connectivity index as well as some resistance-distan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001